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There is presently no reliable experimental  evidence for the re- 
laxation spectra of solids due to purely bulk deformations, because 
direct measurement  of basic relaxation characteristics (frequency and 
modulus defect) involves major difficulties. For this reason, even the 
existence of bulk relaxation is not entirely clear,  in spite of many 
statements [1-3]  that there is a second, or bulk, viscosity. 

The internal-friction method is valuable in the study of relaxation 
processes, and for shear deformation (torsion Pendulum) it allows one 
to compare each relaxation process with a theological model and a 
physical mechanism [4]. It is difficult to isolate bulk relaxation in 
pure form, so it  is of interest to take into account its effects on shear 
relaxation with reference to the longitudinal oscillations of a specimen. 

The relaxation spectrum can sometimes he described in the theory 
of elasticity by means  of Rabomov's fractional exponentials [5]. Then 
the stress tensor Oik of a homogeneous isotropic solid (neglecting ther- 
mal  relaxation) is 
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in which elk is the deviator of the deformation tensor, 6ik is the 
Kronecker symbol, AK = K.o - K0 and Ag = p.o - ~0 are the differ- 
ences between the unrelaxed and relaxed values of the bulk and shear 
moduli,  respectively, and 3~ is Rabomov's f ract ional-exponent ialrelax-  
ation kernel: 
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where the subscript l relates to shear relaxation and the subscript 2 to 
bulk relaxation. 
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We can apply (1) to torsional oscillations of small  amplitude, 
when the hypothesis of planar sections applies, to explain the broad 

relaxation peak for internal friction [6]. The effects of bulk relax- 
ation can be seen in the s teady-state  longitudinal oscillations of a 
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specimen whose mater ia l  is described by (t) ,  for which purpose it is 
convenient to rewrite (i) in the space of Laplace transforms [9]: 

z~,k ** = K*e**8~:1,: -{- 2~t*e, ~: (a) 

in which a single asterisk denotes the transformation of a one-sided La- 
place transformation, while two asterisks do the same for a two-sided 
one. The initial relation between the stress and deformation tensors 
then corresponds to an elastic problem, only with the difference that 
the elastic moduli are dependent on the parameter  p: 
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The subsequent discussion of longitudinal extension of a rod cor- 
responds exactly to the elastic problem [7], which gives us the follow- 
ing for the compliance and Poisson's ratio: 
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tn (6) we convert to the space of Fourier transforms p --" ico, to get 
the following complex expressions for the compliance and Poisson's 
ratio in stationary periodic tests: 

J (o) = J '  (o) - -  J "  (~), ,~ (o) = v '  (0)) - -  iv"  (co) , (7) 

in which 
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where J~ and v~ are the unrelaxed values of the compliance and 
P0isson's ratio. 
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We have the following for the real part of Poisson's ratio: 

'v' = 0.5 (a~bl - -  ~1 c - -  2~x~.2 alb~) X 

X (asbl -}- 2~IC + ~i~2 alb~) -1 , (10) 
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in which we have used the ratios 

I ao / Ix~ : ('~,1 t ~1) ' 

We take as measure of the internal friction the tangent of the 
phase shift between the stress and deformation as given by (8): 

t g  6 = j , t / j , .  (12) 

We consider a numerical  example with v~ = 0.3, g 0 / ~  = K0/ 

/Koo = 0.8, 7sifTs2 = 10 3, w = I in order to establish whether, in 

principle, a relaxation peak due to bulk deformation can occur. Fig- 

ure 1 shows as In ~s2 ~ T'I the tan 6 and phase diagram for the com- 

pliance J" = f(J') (parts a and b, respectively). As parameter we have 

Y = Yl = Ys, the values being given on the curves. The limiting value 

y = i indicates that the shear and bulk relaxations are described by 

models of a standard linear body, and it leads to clear separation of 

the two peaks. If the bulk and shear moduli have equal degrees of re- 

laxation, they make unequal contributions to the total effect, as de- 
fined by voo, the shear peak being about 5.5 t imes larger than the 
bulk one. Reduction in 7 corresponds to broadening of the relaxation 
spectrum [6], and the difference between the peaks vanishes. The 
value y = 0.5, which corresponds m a relaxation kernel expressed by 
means of the probability integral, may be considered in this case to 
correspond to the lower l imit  for the bulk effect, i. e . ,  bulk relaxation 
is not seen for all 7 < 0.5, although it  exists. The possibility of ob- 
serving bulk relaxation is thus dependent not only on the ratio of the 
relaxation times for shear and bulk stresses [8], but also on the param- 
eter that characterizes the width of the relaxation spectrum. 

The curves of Fig. 2 are analogous to those of Fig. 1, but il lus- 
trate the situation where 71 # Ys. Here we have assumed 72 = 1, i. e . ,  
the bulk relaxation obeys the model of a standard linear body, while 
the values of Yl are given on the curves. The broadening may be so 
great as to lead to loss of the shear peak, e . g . ,  for 71 = 0.1. 

Finally, Fig. 3 shows that bulk relaxation clearly affects the be- 
havior of the static Poisson's ratio v'. The curves for 7 = I'I = Ys show 
that bulk relaxation reduces y' ,  while shear relaxation restores it to 
its unrelaxed value yoo. The effect increases with 7 and is largest for 

7 = 1 .  
In the l imit  ~s2 "* % when there is only shear relaxation, the 

latter increases Poisson's ratio from uoo to a value dependent on the 
degree of relaxation of the shear modulus. 

As in ~sa ~ T-X, the temperature dependence of the dynamic 
Poisson's ratio is the most convenient means of detecting bulk re- 
laxation. 
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